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Abstract of the samples in the guide. A number of solution to this

Accurate assessment of the color of human teeth is impor‘-’rc}blern have been propo'ségd.' o
Even if all the preceding difficulties can be resolved,

tant for the specification of color for dental restorations, , . : X e
as well as the evaluation of the efficacy of treatment pro¥e must still deal with metamerism. The illumination con-

cesses that are intended to restore natural tooth color. Wition in most clinical offices may match the work environ-
are investigating the use of a Kodak model DCS460c dig/Ment of the patient; but it is nothing like that to which the
ital camera for colorimetry of teeth. Our objective is to Patient is exposed in other parts of his or her daily life,
obtain CIE XYZ tristimulus coordinates from the raw rgb SUCh @s daylight, cozy dim light in the living-room, etc.
data acquired by the camera. Our model consists of a set 4 Match in the clinical office does not guarantee a match
3 nonlinearities for gray balance, followed by a3 ma- under another illuminant. It is important to obtain a good

trix transformation. Using this model, we have achieved arinatch under all conditions of illumination; and this cannot
average error of 1.450X £ units over a set of 180 color P€ @chieved by methods based on visual comparison.
samples, 0.970QF units over a Bioform shade guide, An alternative is to use a traditional spectroradiometer

and 1.5745AE units over a set of 11 extracted human O spectrophotometét:* The advantage of this approach
teeth. is that the full visual range of the spectral power distribu-

tion is obtained. Nonetheless, there are several disadvan-
Introduction tages of this measurement technique. First of all, it yields
only spot measurements. Its spatial resolution is very lim-

Conventionally, dentists determine the color of human teetft€d- This is especially important here because with natu-
via visual comparison to a standard set called a shade guid@! teeth, the color varies widely across the surface of the
This process requires technical training and artistic judgfooth. Secondly, the spectroradiometer is not well suited
ment. When the color of the tooth does not match one of© use in the dental office setting because of the difficulty
the samples in the shade guide, the technician will adjus®f Setting up the instrument. Finally, the natural translu-
the Munsell coordinates of the nearest shade guide sampf&nce of the tooth, its uneven and highly polished surface,
based on the visual difference between that sample and tiff1d the effect of wetness of that surface make the measure-
tooth. Even though many researchers have suggested sy8€nt task even more difficult.
tematic approaches to shade selecttomatching based In this paper, we take a different route to assess the
on visual comparison remains a very inefficient approachgolor of human teeth. We propose a method that uses a
and subjective human errors are a significant problem.  digital camera for colorimetry of human teeth. The objec-
Furthermore, it has been shown that several existingive of our color calibration is to provide a precise device-
shade guides are inadequate to represent the color spaceldflependent CIE XYZ tristimulus vector color descriptor
human teett® An additional source of difficulty is the fact for dentistry applications.
that shade guides are constructed from materials that are Color calibration techniques have been widely used in
different from those used for the restoratiom,g. bridge cross media reproduction. Several techniques have been
or crown, etc. This limits the accuracy of using a shadedeveloped for a scanner or digital camera. One common
guide as a standard to specify the color for the restoratiormethod is to use ax383 matrix to transform scanner/camera
All of these errors may be reduced with proper training,RGB to CIE XYZ. Wandell and Farrét® used a training
accumulated experience, and development of better shadet and a least squares method to minindiZé. Finlayson
guides. The effectiveness of the shade guide is impacted band Drewf utilized the information of spectral sensitivities
both the choice of colors for the samples, which is typicallyof color devices and an assumption regarding sample re-
based on the colors of natural teeth, and the arrangemefiectances to find this:3 3 calibration matrix. The major
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difference between these two approaches is that the for- 3-D calibration model
mer functions well with color samples that are close to the
training set, but may perform poorly when the test color isin this section, we describe a simple 3-D calibration model
outside the training set. The latter approach performs redgor the Kodak DCS460c digital camera. It includes a gray
sonably well over a large set of colors, but is inferior within balance procedure followed by a3 matrix. We extract
a restricted set of colors. Both methods are linear transfori 2-bit spatially multiplexed raw rgb data directly from the
mations; and the matrix size is restricted by the number o€amera hard drive and pattern correct it according to the
channels that the color device possesses. procedure described in Kodak Programmer’s Marflalke
Farrell et al’ used a color transparency to increase thethen interpolate to obtain full resolution channels of rgb
number of available channels. In this case, the matrix bedata.
comes 63. Kangjf*ig proposed a two step process to MaP camera nonlinearity and its gray balance
RGB to CIE XYZ: gray balancing followed by a polyno- )
mial transformation. Lenz et%land Haneisfii also pro- L€t e denote the camera exposure time; andslét) and
posed polynomial transformations to minimi2eE. In denotg thdth chaqnel sensor response and its measure-
general, these nonlinear methods perform better on the traf€Nt Noise, respectively. Let)) be the spectral power
ing set, because the linear model is a restricted version dfistribution of a color sample. Then tigh channel raw
the polynomial case. However, a high degree polynomiafi@@ @cquired by the camera can be model&d as
tends to over fit the data set. Kang and Andefspro-
posed an even more sophisticated model which uses a neu-{ = 7, (e/ st(A)e(A)d + m) l=rg,0. 1)
ral network to transform RGB to CIE XYZ. A
For our purpose, we propose a simple 3-D model as,
depicted in Fig. 1 for the color calibration task. It consists
of a set of 3 nonlinearities for gray balance followed by
a 3x3 matrix transformation. Our objective is to find an
optimal set of model parameters which minimizes the tota

ere 7(+) is the camera nonlinearity of tH¢h channel.

Suppose that the measurement noigés negligible; we

can determine the nonlinearity of the camera in the fol-

,owing two step procedure. We first fix the exposure time

least square calibration error in the CIE XYZ color space.e.a.md take pictures of a ;et of 2.5 gray patches. The sig-

Our model is appropriate under two situatiottéThe first nificance of these color S|gnal§ IS that thgy haye i same
. spectral shape and vary only within a multiplication factor;

occurs when the camera is colorimetic. However, this i . . .
seldom true for currently available devices. The other si:that is, they have the form dfnco (), wherem is the in

; : ex of the gray patch. Fig. 2 shows the nonlinearity of our
uation occurs when the color space of interest can be Weﬁi X grayp '9 W ! "y Y

) 7 camera at a 4 second exposure. Next, we determine our
approximated by bases of three from a principal compo- : . X .
nent analysis. camera nonlinearity along the exposure time axis by vary-

ing e while taking pictures of a fixed gray patch. The result
is shown in Fig. 3. These two curves are often referred to

12 bits

rapy gz, Gray balance

e A as gray balan(i? curves which in effect are equivalent to the
P e et 7l el ol operation ofF ().
—b— A b — — Z
Figure 1: Simple 3-D calibration model. S
4 /A o
Our measurement shows that 99.29% of the energy in 40 S “ L
the spectral power distribution of a set of 11 extracted teeth = Jx 5
can be characterized by just the first three basis functions 2300 v A v
from a principal component analysis. This satisfies the re- § S0
quirement for a simple 3-D model. 20 ST
In this paper, we present the color calibration results = 4 oat ot . s red
for our model applied to CRT generated color samples, 10r vaA’;v” o © green
samples from the Bioform shade guid@nd a set of ex- oo’ T My estimate
tracted human teeth. In addition, we present an analysis » 02 02 06 0B 1
of the effect of measurement error in the testing set on the 12-bit camera rab at scale 0-1

model performance. We perform a similar analysis of the

effect of measurement error in the training set. In bothFigure 2: Camera nonlinearity at 4 second exposure. Here the
cases, we specifically consider the effect of quantization of2-bit camera rgb is normalized to 0-1 scale, i.e. the unsigned
data set to determine the number of bits required to achiev&2-bit integer rgb value is divided by'(21).

a given level of performance.
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21 : : stacksS, andT; of the testing set. Let; = [L] a; b;]
A gﬁgen be the tristimulus row vector of thith test sample in the
T0.8 | v blue ] L*a*b* color space, which is calculated framby

o linear estimate 13

5]

20.6 o up = f(t), (5)
E o A v t

504 ) 1165 () - 16

S o e = | 50(e(£)-e (X)) |, ®
20.2 = v " "
NP 20 (¢ () - ¢ (%))

0 1 2 _é ) 4 5 6 where
exposure time in seconds
z'/3 z > 0.008856

7.787¢ + L8 2 < 0.008856

Figure 3: Camera nonlinearity across exposure time. o(x) = {
116

Parameter estimation of the 3x3 matrix Let As; = [Ar; Ag; Ab;] be the noise in the rgb channels

Let S be the stack of the gray-balanced camera rgb value$f theith test sample. Then from Eq. (2), the variation of
and letT" be stack of the true tristimulus values of the color tristimulus valuesiz; is

samples. Lefi/ be the transformation from camera linear

rgb values to CIE XYZ values. Our model suggests that At = ((si + Asi) M) = 5:M) = As; M. ()

T~ SM or more precisely speaking Accordingly, the variatiom\u; is

fosie s ‘2) Nui = flti+ k) - £(t0),
where ~  Atf'(t),
B r1 g1 by R ASZMfI(t,) (8)
T2 g2 b2 ' . .
S = ] ] ] , Let J; denotef'(¢;), a 3x3 Jacobian, which equals
L ™™~y 9V, le 1 XTZI/BXZ'_2/3 0 0
X, Vi 7 Ji=3 0 v, YRy 0
Xy Y2 7y 0 0 Zy'\ P77
T — , (2
: : : 0 500 0
| XN, YN, Zn, - 116 —-500 200
0 0 —200
andF is the calibration error matrix. The calibration pro- )

cedure is thus formulated as a least-square problem
N, Then the increase ah E due to the additive noise in the

M= arg mj\}n Z X, Vi Zi] — [ri g: b M|, 3) testing set can be calculated as

- (AE)? = [|Audll3 = AsiAi(As), (10)
and the solution is
- whereA; = M J;J!M*. The size of its entries is inversely
M =S'T = (5'S)'S'T. (4)  proportional to the XYZ tristimulus values to the power
In this paper, we refer to thes¥, color samples used for of 4/3. This implies that the effect of the nois_e is more
calibration m,odel identification as the training set and theSerlous with dark samples, or colqr samples with smaI! X
remaining samples as the testing set or Y or Z values. Cons.|der a special .case'when t.he noises
' in the 3 channels are independent, identically distributed

Error analysis (i.i.d.) random variables with zero mean and varianée
Let(S;,T1) be the stacks of the training set; and(I§f, 7,)  Then

be the stacks of the testing set. Consider a given calibra-

tion matrix M/ identified by the training setS;, T} ). Let (E[AE))? < E[(AE)?] = E[AsiAi(Asy)'],

s; = [r; g; b)] andt; = [X; Y; Z;] be theith row of the = o?-tr[4y], (11)
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wheretr[-] denote the trace of the matrix. Thus, in this unless the device has very low SNR. Under these assump-
case, tions A E; is upper-bounded by

E[AE;] < o - /tr[4;]. (12) AE; < Kj - ||SI||§ |ASL|F- @a7)

Next, in order to investigate the effect of measurementf we again assume that the camera measurement noise is
error in the training set on the model performance, let us.i.d. with zero mean and varianeé, then
assume thaf\ S, is the stack of the camera measurement

.. . . Ni 3
errors for the training set. L&t/ be the calibration model 27 9
identified from noise-free camera measurements; and let EllASE] = ¢ l(i—: 4 (AS1)@wn)”| >
M' be the model identified from noisy camera measure- N "3‘1 =
ments. That s, — Z Z 5[((A51)(k,z))2],
M = SITl and M' = (Sl + ASl)TTl k=11=1

= 3Nio® (18)
Let ¢; be the tristimulus row vector of thith test sam- .
ple. Then the tristimulus variatioAt; due to this model Thatis,
variation is
(E[AE))? < E(AE;)] < K; - |ISTll5 - 3N1o”. (19)
Atj = s;M' — s;M = s;((S1 + AS)t — ST, (13)

Hence
Similar to the previous analysis, using a first order approx-
>imi previ ysis, using P EIAE] < K; - |IST2 - /3 N0 (20)
imation, the variation of the tristimulus row vector in the
L*a*b* color space is Color calibration results

Auj m At;J; = s;((S1 + AS)T = S))T1J;. (14)  Due to the linearity of the CCD array and the access to
, . ) raw rgb data from our camera, gray balance is unneces-
Hence the increase a7 for the jth test sample resulting g5y when the range of operation is between 0 and 0.7 on a
from the additive noise in the training set, can be calculate@)_1 scale using a fixed exposure time. The calibration re-
by sults were quantified in term &€ £ units in L*a*b* color
o il — |1 Tt t_ atytot space. The reference white points were set by combining
AEj = l[Aull: = [T (St + AS)T = S1)sgllo- (19) highest measured Y value from each data set with the
Using inequalities for the-norm and Frobenius-norf, —chromaticity(z, y) = (0.3127,0.3291) for D6S.

AE; can be upper bounded by In our first calibration test, a set of 180 color samples
were created and displayed on a CRT monitor. Within this
AE; < ||J}§T1t||2 ISy + AS)Y = 8D, - ||S§,||2, data set, a total of 51 color samples which consisted of

pure red, green, and blue patches were used to find the

S N (G AS)T = 8D lr- Iz, calibration model... This model was then used on the

< NTGT e - (185l - 211 AS | - training set itself to see how well this calibration model
max{||SI||§, (S + ASI)TH%}, works. We also used .th_is model to estimate the tristimu-

B . fi2 lus values of the remaining 129 color samples. THE's

= K -max{[|S][lz, [|(S1 + AS1)"[5} between model prediction and measurement for both cases
|AS ]| 7, (16)  were calculated; and the histograms are shown in Fig. 4.

We applied the same calibration procedure to a Bio-
where K; = 2 - ||7iT{||> - [|sj[l>. Let us assume that form shade guide. Due to the limited size of this data
rank(S1) = rank(S; + AS) and[|AS, |2 is small, the# set, we evaluated the model performance in a statistical

+ t sense. The calibration procedure was conducted 100 times.
1(S1+ AS) Iz = (157 ]l2, In each trial, seventy-five percent of the shades were ran-
domly chosen as the training set and the rest as the testing
set. The averag& E's for both the training set and the test-
max{||SI||§, 1081 + AS)T12) ~ ||51r||§' ?ng set were recorded in each trial. The calibration exper-
iment for 11 extracted human teeth was conducted in the
The above assumptions are very reasonable since (i) bo#ame fashion. In Table I, we summarize the characteristics
S1 andS; + AS; have rank 3 unless the training set is of the calibration samples and the model performance for
a 2-D or even 1-D color set, (ifJAS:||» is usually small  our calibration experiments.

which implies that
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3 8 where
24 66
20 60 50 _ 1 Na
. 49 K= EZQ'”JITHE'”%”Z (25)
10 i=1
H 6 6 20
3
Hﬂéﬂﬁz ek 12 SettingY = 1 and solving forA, we obtain
Cb 5 10 0 5 10
(@ (b) 2

Figure 4: Calibration result for 180 CRT color samples: (a) the (26)

- /N .. eT2”
AFE histogram of the 51 training samples. Its average is 1.8159. Ny~ K-St

(b) the AE histogram of the 129 test samples. Its average isThe number of bitd,..., required to achieve an average
1.3064. The averagA E over the entire 180 CRT color samples upper bound of onA E unit is again given by Eq. (23).

Is 1.4507. We applied these analyses to our calibration samples;
and the results are tabulated in Table Il. With our 12-bit
Data | Overall | Principal component analysis Color camera data, we see that test sample quantization is not a
CSStT - 35%7 (61F?2§)'t\évg.’£[7ies))gzzgj) sg_%:e limiting factor for our calibration samples. For quantiza-
Shadel 0.9703 (94.53%: 98.24%: 99.01%) | 2-D tion of the training samples however, our bound appears to
Teeth | 1.5745 | (91.73%, 97.91%, 99.29%) 2-D be quite loose.
Table 1. 3-D calibration model: the data set characteristics and Data broat buraning
the model performance. The accumulated percentages of the en- CRT | 10 bits | 15 bits
ergy in the spectral power distribution characterized by the first Shade| 9bits | 25 bits
Teeth | 10 bits | 24 bits

one, the first two, and the first three basis functions from a prin-
cipal component analysis are computed; and they are used tqaple II. Estimation of the number of bits required to limit the
classify the dimension of the color space. Here wedi$é as  effect of quantization to an increase in error of o\ unit. We

the threshold. consider separately the effect of quantizing the test samples and
the training samples.

Finally, we wish to determine the number of bits re-
quired for our test samples so that quantization of these To confirm this suspicion, we simulated the effect of
samples does not degrade the performance of the modgliantization in the testing set (Simulation 1) and in the
by more than a specified amount. We will SR E' unit  training set (Simulation 1) by adding uniformly distributed
here. This can be done by averaging the upper bound giveiandom noise to the camera measurements. The results are
in Eq. (12) over theV, test samples. Lep denote this av-  tabulated in Table IIl. Note that th& E between the esti-

erage. Then mated tristimulus vector for the noisy color sample and the
No estimated tristimulus vector for the noise-free color sam-

d = 1 ZJ VUr[A] =0 - A, (21)  Ple is averaged over 100 trials, then averaged over all the

Ny Py test samples. The simulation results show that the upper

S _ bounds for Simulation | are tight; and those for Simulation
where,A = g-3°;2) V/ir[A]. Assuming that the quan- || are very loose. In fact, from the ratip, we see thatf

tization step size iQ\, then the standard deviationin Eq.  gyerestimates thig g DY @bout 7, 17, and 14 bits, respec-
(12) is given byA/(v/12). Setting® = 1 and solving for  jyely,.

A, we obtain
- Data | Sim.T | Bound [ Sim. IT | Bound | ratio (y)
A =VI12/A. (22) set | AE ® AE T (bits)
CRT | 0.1575 | 0.1792 | 0.0308 | 4.5784 7

Since the signal is normalized to a 0-1 scale, the numbefsraget 00792 T 0087 T 0.0567 | 51107 17
of bits b, required to achieve an average upper bound of Teeth | 0.1558 | 0.1795 | 0.1397 | 3055.8 14
oneAFE unitis given by

Table Ill. Simulation results of the average increase\dt over
bes = — log, A. (23)  the testing set in 100 trials. Simulation | investigates the ef-

A similar analysis can be done on the effect of quan-feCt of measurement error in the testing set on the model per-
tization in the training set by averaging the upper bound‘ormance; and its average upper bound is calculated from Eq.

given in Eq. (20) over the testing set. L¥tdenote this (21). Simulation Il investigates the effect of measurement er-
average. Then ror in the training set on the model performance; and its av-

_ erage upper bound is calculated from Eq. (24). Here=
T =K||S])2- /3N, - A/(V12), (24)  —log,((AE in Sim. I))/) bits.
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The reason that the upper bounds of Simulation Il are 10.

especially loose for both the Bioform shade guide and the
extracted human teeth is that they are actually 2-D color
sets, which violates the assumption in the error analysis
section.

Discussion and conclusion

There are several sources which would result in the calibra-
tion errors, such as the error from the XYZ measurements,
the error from the 3-D model assumption, or the error due
to quantization in the camera measurements. Our simula-
tion shows that our 12-bit precision camera is adequate to
ensure that the averageE contributed by the quantiza-
tion process is less than one.

The calibration model we proposed is simple; and it
performs well for our 3-D color sets. Based on a just
noticeable difference di.3A E units, * the performance
of our model for the extracted human teeth is adequate.
However, we would like to obtain even more accurate re-

sults. One factor that currently limits the performance of 17.

the model is the significant amount of highlight on the
tooth samples. This tends to result in a measurement of the
color of the illuminant rather than that of the tooth. This
is a major source of error in our calibration procedure. We
are investigating the possibility of integrating a polarizer
into our system to reduce the highlight component, and
thus improve the calibration precision.
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